Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans.

نویسندگان

  • S McKenzie
  • S M Phillips
  • S L Carter
  • S Lowther
  • M J Gibala
  • M A Tarnopolsky
چکیده

We studied the effects of a 38-day endurance exercise training program on leucine turnover and substrate metabolism during a 90-min exercise bout at 60% peak O(2) consumption (VO(2 peak)) in 6 males and 6 females. Subjects were studied at both the same absolute (ABS) and relative (REL) exercise intensities posttraining. Training resulted in a significant increase in whole body VO(2 peak) and skeletal muscle citrate synthase (CS; P < 0.001), complex I-III (P < 0.05), and total branched-chain 2-oxoacid dehydrogenase (BCOAD; P < 0.001) activities. Leucine oxidation increased during exercise for the pretraining trial (PRE, P < 0.001); however, there was no increase for either the ABS or REL posttraining trial. Leucine oxidation was significantly lower for females at all time points during rest and exercise (P < 0.01). The percentage of BCOAD in the activated state was significantly increased after exercise for both the PRE and REL exercise trials, with the increase in PRE being greater (P < 0.001) compared with REL (P < 0.05). Females oxidized proportionately more lipid and less carbohydrate during exercise compared with males. In conclusion, we found that 38 days of endurance exercise training significantly attenuated both leucine oxidation and BCOAD activation during 90 min of endurance exercise at 60% VO(2 peak) for both ABS and REL exercise intensities. Furthermore, females oxidize proportionately more lipid and less carbohydrate compared with males during endurance exercise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein requirements for endurance athletes.

Acute endurance exercise results in the oxidation of several amino acids. The total amount of amino acid oxidation during endurance exercise amounts to only 1-6% of the total energy cost of exercise. The branched chain amino acid, leucine, has been most often studied in relation to endurance exercise. Leucine is oxidized by the enzyme, branched-chain oxo-acid dehydrogenase (BCOAD). BCOAD is rel...

متن کامل

Comparison of leucine kinetics in endurance-trained and sedentary humans.

Whole body leucine kinetics was compared in endurance-trained athletes and sedentary controls matched for age, gender, and body weight. Kinetic studies were performed during 3 h of rest, 1 h of exercise (50% maximal oxygen consumption), and 2 h of recovery. When leucine kinetics were expressed both per unit of body weight and per unit of fat-free mass, both groups demonstrated an increase in le...

متن کامل

Exercise training increases branched-chain oxoacid dehydrogenase kinase content in human skeletal muscle.

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580-E587, 2000); however, t...

متن کامل

Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise.

Muscle malonyl-CoA has been postulated to regulate fatty acid metabolism by inhibiting carnitine palmitoyltransferase 1. In nontrained rats, malonyl-CoA decreases in working muscle during exercise. Endurance training is known to increase a muscle's reliance on fatty acids as a substrate. This study was designed to investigate whether the decline in malonyl-CoA with exercise would be greater in ...

متن کامل

Adaptation of protein metabolism to endurance training. Increased amino acid oxidation in response to training.

This study was conducted to investigate alterations in excretion of urea and total nitrogen after6-8 weeks of daily exercise and to establish if the capacity for amino acid oxidation in muscle is influenced by endurance training. Urea nitrogen excretion was increased in trained compared with untrained rats and nitrogen balance was less positive in trained than in untrained rats. Increased [14C]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 278 4  شماره 

صفحات  -

تاریخ انتشار 2000